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Scaling of the glassy dynamics of soft repulsive particles: A mode-coupling approach
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‘We combine the hypernetted chain approximation of liquid state theory with the mode-coupling theory of the
glass transition to analyze the structure and dynamics of soft spheres interacting via harmonic repulsion. We
determine the locus of the fluid-glass dynamic transition in a temperature—volume fraction phase diagram.
The zero-temperature (hard-sphere) glass transition influences the dynamics at finite temperatures in its vicin-
ity. This directly implies a form of dynamic scaling for both the average relaxation time and dynamic suscep-
tibilities quantifying dynamic heterogeneity. We discuss several qualitative disagreements between theory and
existing simulations at equilibrium. Our theoretical results are, however, very similar to numerical results for
the driven athermal dynamics of repulsive spheres, suggesting that “mean-field” mode-coupling approaches
might be good starting points to describe these nonequilibrium dynamics.
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I. INTRODUCTION

An assembly of hard spherical particles undergoing
Brownian motion, if it can avoid crystallization (e.g., due to
polydispersity), at a sufficiently high volume fraction under-
goes a glass transition to an amorphous solid state [1]. In
experiments, structural relaxation of colloidal hard-sphere
systems stops near volume fraction ¢=0.60 [2]. The phe-
nomenology of this so-called colloidal glass transition is
strikingly reminiscent of the molecular glass transition ob-
served upon decreasing the temperature in glass-forming lig-
uids. When Brownian motion is negligible, a hard-sphere
system undergoes instead a jamming transition near ¢
=~().64; it acquires rigidity by building a mechanically stable
network of contacts between particles [3]. This is most
readily observed in granular materials.

While the glass and jamming transitions of hard-sphere
systems have been widely studied for a long time, the study
of dense systems composed of soft repulsive particles is, by
comparison, in its infancy. Colloidal particles with tunable
softness are now routinely prepared in the laboratory [4—7]
and examples of compressible grains abound [8-10]. The
rheological, structural, or dynamical properties of both types
of systems are currently actively studied experimentally by
several groups [4—10]. This justifies current theoretical ef-
forts to understand the behavior of dense assemblies of soft
repulsive particles both at finite temperatures [11-14], rel-
evant for colloidal systems, and in the zero-temperature limit
relevant for granular materials [15-19].

In this paper, we combine the hypernetted chain approxi-
mation of liquid state theory [20] with mode-coupling theory
[21] to analyze the equilibrium structure and dynamics of
dense systems of soft particles with finite range, harmonic
repulsion [15]

V(r< o) =€(l - rlo)?, (1)

where € determines the strength of the repulsion, o is the
particle diameter, and r the distance between two particles.

1539-3755/2010/81(3)/031505(10)

031505-1

PACS number(s): 64.70.qd, 05.20.Jj

Particles separated by r> ¢ do not interact, V(r>o)=0. The
control parameters for this system are therefore the volume
fraction @=mo>p/6, with p the number density and the ratio
of the temperature and e. In the following we use reduced
units: we give lengths in units of o and temperature in units
of e.

The system of harmonic spheres was originally intro-
duced in the context of the zero-temperature jamming tran-
sition [15]. More recently, its behavior was investigated at
finite temperature using molecular-dynamics computer simu-
lations [11-13]. This model system was not studied theoreti-
cally in the context of liquid state and mode-coupling theo-
ries. However, its physics should be similar to a number of
similar models such as Hertzian spheres [22] or the Gaussian
core model [23,24].

In both thermal and athermal contexts various scaling re-
lations were reported for the dynamics of harmonic spheres
in the vicinity of the glass or jamming transitions occurring
in the hard-sphere limit [11,12,18,19]. This type of scaling is
usually rationalized by postulating that harmonic spheres in
fact behave as an “effective” hard-sphere system with a
“renormalized” volume fraction [11]. However, the scaling
formulas are typically established using largely empirical
procedures. Our primary goal in this work is to derive this
scaling behavior using a liquid state theoretical approach in
order to put it on a firmer basis, at least for systems in ther-
mal equilibrium.

The paper is organized as follows. We present theoretical
methods which we use to obtain the structure and dynamics
of harmonic spheres in Sec. II. We then present results for
the equilibrium dynamics in Sec. III. We describe the phase
diagram in Sec. IV. In Sec. V we analyze dynamic heteroge-
neity using three-point dynamic susceptibilities. We conclude
the paper in Sec. VI.

II. THEORETICAL APPROACH

Our theoretical approach consists of two steps. First, we
use the hypernetted chain (HNC) approximation of liquid
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state theory to obtain the static structure of the harmonic
sphere system. Next, we use the predicted static structure
factor as input of the mode-coupling equations to obtain time
correlation functions of harmonic spheres and we use these
functions to determine the dynamical behavior. In the next
two subsections we briefly describe the two elements of our
approach.

A. HNC equations and static behavior

The HNC approximation [20] results in a closed equation
for the pair correlation g(r) of a fluid. It reads

g(r) =exp[- BV(r) + g(r) = 1 —c(r)], (2)

where B=1/T and c(r) is the direct correlation function de-
fined through the Ornstein-Zernike equation

g =1=clr)+ pJ dr'c(|r—r')[g(r') - 1]. (3)

We solve Eq. (2) numerically using an iterative procedure.
Since the direct correlation function is smoother than the pair
correlation function, the HNC equation is more easily solved
in terms of c¢(r). Given the solution for c¢(r) after i—1 itera-
tions, ¢,_;(r), we obtain the solution at step i as follows:

FT oz FT~! HNC
cioy(N—=2¢i.1(@)— 8i-1(q) — gi—1(r) — c(r) — ¢i(r)
=ac(r) + (1 - a@)c;(r), 4)

where the first and third steps are Fourier transforms per-
formed using fast Fourier transforms, the second one uses
the Ornstein-Zernike relation (3), the fourth one uses the
HNC closure relation (2), and the last step involves combin-
ing the previously obtained direct correlation function c(r)
with c;_(r) using a mixing parameter a. Convergence is
achieved when the difference between ¢,(r) and ¢,_;(r) in Eq.
(4) becomes smaller than some prescribed precision.

Since we want to access very low temperatures where the
pair potential in Eq. (1) becomes equivalent to a hard-sphere
potential, some attention must be paid to the discretization
scheme we use. Additionally, the fluid develops medium-
range structure when density increases and/or temperature
decreases, so that the cutoff in real space must be large
enough. We used a real space cutoff L=32 and discretized
the interval [0,L] using 2" points, which is convenient for
the fast Fourier transform algorithm. To properly represent
the low temperature behavior, discretization must be accurate
enough that the factor

Y(r,T) = expl- B(1 - r)*], (5)

is correctly described even at very low 7. We note that, for a
given discretization, there necessarily exists a temperature,
T,, below which Y(r,T) is not well-described. It is easy to
see that this temperature scales as T,~ 272",

This behavior is illustrated in Fig. 1 which shows how the
structure factor S(g,T) of harmonic spheres at ¢=0.522
reaches its T— 0 value for increasingly finer discretizations
(data are shown for ¢ near the first diffraction peak). To get
accurate results down to 7=1078, as shown below, we need
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FIG. 1. Convergence of the numerical solution of the HNC
structure factor to its 7=0 hard-sphere limit for g near the first
diffraction peak at ¢=0.522. For a given number 2" of discretized
values of r lLsed to solve Eq. (2), there exists a temperature above
which the VT convergence in Eq. (7) is obeyed. The vertical line
shows the lowest value of T used in this work.

to use n>18. The value n=19 is used throughout this paper.
Additionally, since we need structure factors for tempera-
tures and densities in very narrow ranges near the dynamic
singularities, we had to pay close attention to the accuracy of
the numerical solution of the HNC equation in order to re-
solve very close state points.

In Fig. 1 we also show that difference between the finite
temperature S(¢,T) and its hard-sphere (7=0) limit scales as
VT. This behavior can be derived as follows. Since
g(r<1,T=0)=0 for hard spheres we can decompose the dif-
ference S(g,T)-S(q,0) as follows:

sin gr
> 8T

I
S(q,T) - S(q,0) = 4’7Tpf drr
0

sin

P re(r.1) - g(r.0)].

+ 47Tpf drr?
1 qr

Using the fact that in the low temperature 7— 0 limit Y(r,T)
becomes a narrow peak located at r=1, it is possible to ap-
proximate the first term in this expression by

sing —

2772 \T. (6)

7" py(r=1,T=0)

where y(r,T)=g(r,T)/Y(r,T) is the cavity function. Since
both g(r,T)-g(r,0) and S(g,T)—S(g,0) are of the same or-
der, we conclude that

S(g,7) - S(g,0) ~ T, 7

and this scaling is satisfied, see Fig. 1. The T temperature
dependence of the difference S(q,T)—-S(g,0) will play a cru-
cial role in the next section, Sec. III. We will use it to moti-
vate the dynamic scaling in the vicinity of the hard-sphere
transition, within the mode-coupling approximation.

In a recent molecular-dynamics investigation [11], the
temperature dependence of the energy density, e(7), was
used to relate soft spheres to hard particles. Reasoning as
above, we can predict the low temperature behavior of e(7).
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The energy density can be expressed in terms of the pair
correlation function

1
e(T)= 27Tpf drr*V(r)g(r,T). (8)
0

The convergence of e(T) to its T=0 value e(T=0)=0 can be
estimated by making explicit the Y(r,T) factor in g(r,T) and
using the cavity function. In this way we obtain

2
e(T) = pr(r: 1,T=0)T%2. 9)

Molecular-dynamics investigation [11] reported a power-law
behavior of the energy density, e(T)~ T, with exponent u
crossing over from w=3/2 at low volume fraction to u
~1.3 at larger volume fraction. This indicates that the low-
temperature scaling regime (9) is not accessible at large den-
sities in molecular dynamics simulations.

B. MCT analysis and dynamic behavior

The mode-coupling theory (MCT) [21] was originally de-
rived to describe the dynamics of Newtonian systems [25].
An analogous theory was later derived for Brownian systems
[26]. Here we briefly present the latter version of MCT.

The starting point of the theory is an exact equation for
the time derivative of the intermediate scattering function
F(g ;1) in terms of the so-called irreducible memory function,

Dyg’

dF(q;t)=— s(q)

1
F(q;t)—f dt' M™(q;t 1), F(g;t').
0

(10)

Here D, is the diffusion coefficient of an isolated Brownian
particle. Irreducible memory function M™(g;¢) can be ex-
pressed in terms of a time-dependent four-point density-
correlation function evolving with the so-called irreducible
dynamics. The main approximation of MCT consists in fac-
torizing this four-point function. In this way this somewhat
mysterious quantity is reduced to a product of two interme-
diate scattering functions. After an additional technical ap-
proximation (which was independently shown to be quite
innocuous) one arrives with the following expression for the
irreducible memory function

. D, [ d
M"(q;1) = g—q; (2:33[(1 q,¢(qy)
+q-(q-q)é(q-q,)I*F(g:0F(lq - qy]:1).
(11)

Equations (10) and (11) allow us to evaluate the time
dependence of the intermediate scattering function. The only
input required is the static structure factor S(g). It enters into
Egs. (10) and (11) [note that é(g)=(1-1/8(¢))/p, from Egq.
(3)] and it also provides the initial condition for the interme-
diate scattering function, F(g;t=0)=S(g). It is easy to see
that the natural time unit for our system of harmonic spheres
is 02/ D. In the following all times are given in terms of this
unit.
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FIG. 2. Time dependence of the normalized intermediate scat-
tering function F(q;t)/S(q) as predicted by the mode-coupling
theory for harmonic spheres at ¢=0.5235, for wavevector corre-
sponding the first peak in the static structure factor, g=¢ .=~ 7.17.
The static structure factor used as input in mode-coupling equations
was obtained from the hypernetted chain approximation. The lines
correspond to the following temperatures (from left to right):
0.0015, 1.61 X 107, 5.39 X 107, 1.00X 1077, and 6.84 X 107®.

Numerical solution of Egs. (10) and (11) is somewhat
complicated because one needs to describe evolution of the
intermediate scattering function on very widely separated
time scales (see Fig. 2). The commonly used algorithm was
first described in Ref. [27]; here we use the implementation
described in considerable detail in Ref. [28]. Briefly, the ba-
sic steps to the algorithm are as follows. The integrodiffer-
ential equation is discretized and solved for 2N steps with a
finite time step of & using any suitable numerical algorithm.
After 2N, steps are complete, the time step is doubled and
the results from the initial 2N, steps are mapped into equally
spaced set of N, values for the quantities needed to continue
the numerical algorithm. This mapping includes the integrals
as well as the intermediate scattering functions. Then the
numerical algorithm is restarted with the previously obtained
time step and continued for another N, time steps and the
mapping is performed again. This procedure is continued
until a convergence condition is satisfied. In the present work
we used 300 equally spaced wave-vectors with spacing
6~1.96, the first wavevector at ky=05/2 and the largest
wavevector at k,,,=~58.81.

In Fig. 2 we show the prediction of the mode-coupling
theory for the time dependence of the normalized intermedi-
ate scattering function F(q;1)/S(g) for harmonic spheres at
¢=0.5235. With decreasing temperature the relaxation be-
comes progressively slower. One should notice that an inter-
mediate time plateau is developing which is the manifesta-
tion of the cage effect: with decreasing temperature particles
are trapped longer and longer within their first solvation
shells and the final (@) relaxation shifts to longer and longer
times. MCT predicts that at this volume fraction at tempera-
ture 7,.(¢=0.5235)~6.594 X 1078 the plateau extends to in-
finite times and the system undergoes an ergodicity breaking
transition which is commonly referred to as the glass
transition.

In this work, we are primarily focused on the temperature
and volume fraction dependence of the « relaxation time
which we define in the standard way, F(¢max; Ta)/S(@max)
=e~!, where g,,,, is the position of the first peak in the static
structure factor. MCT makes a number of detailed predic-
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tions for various aspects of the time dependence of interme-
diate scattering functions (including power-law approach to
and departure from the intermediate time plateau and the
wave-vector dependence of the relaxation time). The inves-
tigations of the temperature and volume fraction dependence
of these properties are left for future work.

The hard-sphere glass transition within MCT is usually
investigated using as the input the static structure factor ob-
tained from the Percus-Yevick (PY) approximation. For the
discretization used in this work MCT combined with the PY
structure factor predicts the glass transition at (pr%0.5159.
Moreover, MCT predicts that upon approaching (pEY the «
relaxation time diverges algebraically, Ta~((pr—<p)_7HS’PY,
with the exponent Y1SFPY~2 59

In this work, we use the hypernetted chain approximation
for the static structure factor because we are mostly inter-
ested in effects of finite temperature. However, we anticipate
that the low-temperature results will be influenced by the
behavior of the hard-sphere system. Therefore, we also
solved MCT equations in the 7— 0 limit using as input the
structure factor predicted by the hypernetted chain approxi-
mation in this limit. For the discretization used in this work
MCT combined with the HNC structure factor predicts the
glass transition at ¢.=~0.52315. Moreover, according to
MCT upon approaching this critical volume fraction the «
relaxation time diverges algebraically,

T () = LYHS (12)
(.- @)
with the exponent y15~3.26.

It is well-known that in real colloidal systems the glass
transition predicted by mode-coupling theory is avoided.
Typically, as shown in recent contributions [2,12,29], one
can find an intermediate range of volume fractions in which
the volume fraction dependence of the « relaxation time can
be fitted to a power law with the exponent close to that
predicted by MCT (one should note that when this procedure
is used the critical volume fraction is one of the fitting pa-
rameters; typical values obtained from fits are about 10%
different from MCT predictions). The result is that MCT-
predicted power-law divergence of the « relaxation time de-
scribes well the experimental and simulational data over ap-
proximately three decades of 7, Recent experimental and
simulational results reported in Refs. [2,12,29] suggest that
upon increasing volume fraction further this approximate
power law is followed by an “activated” regime according to
which the « relaxation time has an essential singularity di-
vergence at a higher volume fraction.

III. DYNAMIC SCALING AT EQUILIBRIUM

The tools described in the previous section allow us to
obtain, for any given state point (¢,7), the relaxation time
7,(@,T) of the harmonic sphere system within the MCT ap-
proximation. We will report results for a broad range of vol-
ume fractions, ¢ e[0.51,0.90], and temperatures, T
e[1078,1072].

In Fig. 3, we show the evolution of 7,(¢,T) in the vicinity
of the hard-sphere glass transition occurring at 7=0 and
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FIG. 3. Relaxation time of harmonic spheres as a function of
temperature for various volume fractions in the vicinity of the hard-
sphere glass transition. The lines are the analytical formula (14)
using the scaling functions in Eq. (20); full lines correspond to ¢
< ¢@,, dashed lines to ¢>¢,. The power law in Eq. (17) for ¢
=¢,~0.52315 is shown with a dotted line. Corrections to scaling
are seen for ¢=0.515 and ¢=0.53. Volume fractions are: (i) 0.51,
0.515, 0.518, 0.52, 0.521, 0.522, 0.5225, 0.5228, 0.523, and 0.5231
and (i) 0.5232, 0.52334, 0.5235, 0.5237, 0.524, 0.5245, 0.525,
0.526, 0.5275, 0.53, and 0.535.

¢.~0.52315. The behavior observed at finite temperature is
easily explained. When ¢ < ¢, the relaxation time increases
when T decreases, but it saturates at low temperature to its
hard-sphere value which is finite at these densities. When
increasing the volume fraction closer to ¢, this hard-sphere
value becomes larger, and the low-temperature limit is
reached at a lower temperature. For ¢> ¢, the system is a
hard-sphere glass in the 7— 0 limit and so 7,(¢,T—0)=00,
It is clear, however, that the system hits a finite-temperature
singularity at a critical temperature, T.(¢) which increases
continuously from 7,(¢=¢,)=0 when ¢ increases.

At this stage of the description, these data resemble the
ones found in numerical simulations [11,12]. In Refs. [11,12]
a scaling analysis of the relaxation time was performed as-
suming that harmonic spheres at low temperature resemble
an “effective” fluid of hard spheres. Physically, this means
that the softness of the potential allows small overlaps be-
tween particles at low temperatures, so that the effective ra-
dius of the particles is reduced by thermal fluctuations. While
the temperature dependence of the energy density was used
to estimate the average overlap, and in turn, the effective
hard-sphere diameter in Ref. [11], in the context of the
mode-coupling approach a different route should be used to
map soft to hard particles.

Within MCT, at a fixed number density the dynamics of
the system is uniquely controlled by the evolution of the
static structure factor. This suggests that the most efficient
way to map soft to hard particles is by matching the structure
factor of harmonic spheres at (¢,7) to the one of a hard-
sphere system at an effective volume fraction @
=@er(@,T). Combining the low-temperature behavior of
S(g,T) shown in Eq. (7) with the fact that S(g) is smooth
function of the volume fraction we easily find that

(Peff((PvT) = (P_C\"T, (13)

where c is a positive prefactor with subleading dependencies
on temperature and volume fraction.
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FIG. 4. Collapse of the data shown in Fig. 3 using the scaled
variables suggested by Eq. (14) for all data in the range 0.515<¢
<0.53. This data collapse involves no free parameter. The lines
through the points represent the empirical scaling functions f-(x) in
Eq. (20).

The discussion in the two previous paragraphs leads to the
following form of dynamic scaling that should be obeyed by
the relaxation time of the harmonic sphere system

7 le. - ¢
O fe| = |, (14)
le.— | VT

7@, T) =

where the scaling functions f-(x), respectively, refer to vol-
ume fractions above and below ¢... To be consistent with the
qualitative behavior described above, the scaling functions
f+(x) must have the following limiting behaviors: to recover
the hard-sphere plateau at low T below ¢. we need to have

f_(x — ) ~ const; (15)

whereas to have a well-behaved 7,(¢,7>0) across ¢, we
have to require

e = 0) ~ fix = 0) ~x7", (16)
The latter limiting behavior implies that
1 yHS/Z
Tl =@, T) ~ (;) : (17)

Finally, a finite-temperature algebraic singularity is obtained
for ¢> ¢, if there exists some x, such that

Fule—x0) ~ (e =077 (18)

We have found excellent agreement of the MCT pre-
dictions with the scaling form in Eq. (14), which suggests
that the relaxation times at various ¢ and 7 can all be col-
lapsed along two branches by plotting the rescaled time,

16¢|”"7,(¢,T), as a function of the rescaled distance to the
critical point, |S¢|/ \E“, where ¢ = ¢.—¢. The data collapse
is presented in Fig. 4. It works remarkably well for the range
of volume fraction 0.515 < ¢ <<0.53. It should be noted that
no free parameter is involved in this data collapse, which is
uniquely controlled by the T=0 hard-sphere results from Eq.
(12) and by using the appropriate relation between tempera-
ture and density from Eq. (13). In Refs. [11,12], a similar
data collapse was used in the opposite direction to infer the
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hard-sphere behavior from the finite-temperature dynamics
of the harmonic sphere system, a philosophy which is clearly
supported by the results presented in this section.

The next step is to take Eq. (13) more literally and to
combine it with the results for the dynamics of the hard-
sphere system discussed in Sec. II B to make the following
ansatz

7@, T) = T [ @esel @, T)]. (19)

Equation (19) leads to the following scaling functions:

1 -
f+(x)=(_ - Ll) ’ (20)
X

with a=0.72 being the only adjustable numerical factor
[note that « is related to ¢ in Eq. (13)] since the values
=3.26 and ¢.=0.52315 are directly taken from hard-sphere
results, while the scaling variable x=|8¢|/ T was derived in
Sec. IT A. Clearly, these scaling functions are fully compat-
ible with the constraints described in Egs. (15), (16), and
(18). The scaling functions (20) are shown as lines in Figs. 3
and 4.

We have noted several times the similarity between the
present theoretical results and the numerical results and
analysis in Refs. [11,12]. In the simulations, a scaling analo-
gous to the one in Fig. 4 was presented for the behavior of
log 7,(¢,T) instead of 7,(¢,T) here. This implies that the
scaling behavior predicted by MCT is in fact in strong quan-
titative disagreement with numerical results. This should not
come as a surprise since MCT is not able to describe the
thermally activated relaxation which takes place in real
glass-formers. Thus, MCT predicts algebraic divergences
which are never observed in simulations and experiments,
and are replaced by stronger, generically exponential, diver-
gences.

It is interesting to note that algebraic scaling behaviors
and divergences seem to be well obeyed in the case of non-
equilibrium driven athermal dynamics studied in Refs.
[15,18,19]. This is again not surprising since in these dynam-
ics the system simply relaxes to the nearest energy minimum
without being able to cross energy barrier using thermal ac-
tivation [30]. This suggests that mode-coupling approaches
and ‘mean-field’ models (see, e.g., Ref. [31]) might well be
excellent starting points to tackle the athermal driven dynam-
ics of soft repulsive spheres.

IV. PHASE DIAGRAM

In this section, we move from scaling properties very near
¢, and give a broader perspective on the behavior of the
system in the (¢,T) phase diagram. The scaling results pre-
sented above suggest that the system is ergodic at all tem-
peratures when ¢ < ¢,. For ¢= ¢,, Eq. (20) predicts that the
relaxation time diverges at 7,~[T— TC(<p)]"’HS with a critical
temperature which vanishes continuously at ¢, as

T(p=¢)~ (p— @)% (21)

Since the scaling behavior in Eq. (14) only holds up to ¢
~(.53 we have fitted the temperature dependence of the re-
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FIG. 5. Phase diagram obtained from the MCT analysis. Filled
circles are transition temperatures obtained in this work, which fol-
low the scaling behavior in Eq. (21) in the vicinity of ¢., as shown
by the full line. Open symbols are the mode-coupling critical tem-
peratures obtained in Ref. [12].

laxation time at larger volume fraction to the usual power
law divergence found within MCT,

T, T) ~ [T=T ()], (22)

using T.(¢) and y(¢) as fitting parameters.

In Fig. 5, we show the evolution of the resulting T.(¢)
which thus delimits the fluid and glass phases in the theoret-
ical phase diagram of the system. These data confirm that the
scaling behavior in Eq. (21) of the critical temperature is
only obeyed in the vicinity of ¢. and clear deviations are
seen at larger volume fractions where the scaling prediction
overestimates 7. by quite a large amount.

We also find that increasing the volume fraction affects
the value of the critical exponent y. While y(¢= ¢,)="
~3.26, we find that y decreases rapidly when ¢ increases:
v(0.58)=2.92, ¥(0.62)=2.71, ¥(0.68)=2.50, (0.75)
~2.41, and ¥(0.90)=2.37 This is a clear indication that for
¢ outside a relatively small vicinity of ¢, it is impossible to
describe the soft spheres as “renormalized” hard spheres.

We confirm this statement in Fig. 6 where we show the
evolution of the static structure factor along the critical line
T.(¢). While nearly perfect collapse of the data is obtained
for ¢, = ¢=0.53, small deviations become noticeable for ¢
=~().535, and are considerably amplified when ¢ increases
further. It is this large difference in the shape of the structure
factor at the critical temperature which accounts, within
MCT, for the continuous evolution of the critical exponent 7.

We can again compare these theoretical predictions to the
numerical analysis reported in Ref. [12]. Although the mode-
coupling algebraic singularity is not observed in real liquids,
it is usually found that such a power-law behavior is obeyed
over a limited time window of approximately three decades,
which allows a rough determination of the location of the
“avoided” mode-coupling singularity. The outcome of this
exercise for the dynamics of harmonic spheres as determined
in computer simulations reported in Ref. [12] is shown in
Fig. 5 with open symbols. The mode-coupling line deter-
mined numerically has qualitatively the same behavior as the
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FIG. 6. Evolution of the static structure factor along the MCT
critical line T,.(¢). Full lines show that volume fractions between
¢.=0.52315 and ¢=0.53 collapse on the hard-sphere structure fac-
tor at ¢., while deviations appear and increase rapidly at larger ¢
showing that soft spheres are not simply renormalized hard spheres
far above ¢, Volume fractions are: (i) 0.5234, 0.5235, 0.5237,
0.524, 0.5245, 0.525, 0.526, 0.5275, and 0.53. (ii) 0.535, 0.58, 0.62,
0.68, and 0.75.

theoretical line. Although the data do not span a very large
temperature window, they are indeed compatible with a
power-law scaling as in Eq. (21) near the hard-sphere mode-
coupling singularity ¢, and the critical line becomes smaller
than the scaling prediction at larger density. However, the
theory is quantitatively inaccurate as it significantly overes-
timates the critical temperatures at all ¢. Note that for hard-
spheres MCT combined with HNC structure factor underes-
timates ¢. by an amount comparable to that reported for
MCT combined with PY structure factor. These discrepan-
cies are well-known features of the mode-coupling approach
[21] and MCT descriptions of real data usually imply analy-
sis of scaling behavior near singularities whose locations
must be self-consistently determined by fitting.

A more surprising disagreement between theory and
simulations is the evolution of the critical exponent with den-
sity. While theory predicts a substantial decrease of 7 at large
volume fraction, numerical results indicate that y increases
instead very rapidly with ¢ above the hard-sphere value [12].
It is not clear whether this disagreement stems from an in-
correct prediction of the liquid structure by the HNC closure,
or from the mode-coupling approach itself.

V. DYNAMIC HETEROGENEITY

A newer and lesser known application of MCT is to use it
to estimate the strength of dynamic heterogeneity accompa-
nying the glass transition using multipoint dynamic suscep-
tibilities [32]. It is well-known that dynamics near the glass
transition is spatially heterogeneous, meaning that different
parts of the system relax at different rates, while relaxation is
correlated over a length scale which increases when the glass
transition is approached [33].

A useful tool to quantify the strength of dynamic hetero-
geneity is the four-point dynamic susceptibility x,(z) which
is defined from the spontaneous fluctuations of time correla-
tion functions [34,35]
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xa(0) = NI(F(g:0) = (flg:0))°], (23)

where f(q;1) represents the instantaneous value of the inter-
mediate scattering function F(g;t). Intuitively, x,(¢) in-
creases if correlations within the system get large, as the
number of independently relaxing units within the sample
decreases [36]. Formally, y,() is also the volume integral of
a spatial correlator quantifying the extent of correlations be-
tween local, spontaneous fluctuations of the dynamics and
can thus directly be considered as a proxy for the number of
particles that relax in a correlated manner close to the glass
transition [37].

We build on the results of Refs. [38,39] and estimate the
spontaneous dynamical fluctuations quantified by y,() using
linear response theory

T*( 9F(g;1)
Xa(t) Cv< aT

. 2
—‘9F(q’t)) . (4

2
) + S(O,T)(pz(

This relation is known to be an accurate representation of
xa4(7) within the MCT approach [39] and amounts to measur-
ing the response of the averaged dynamics to external fields
in the linear regime [38].

The expression in Eq. (24) is highly convenient in the
present context as we can directly obtain analytical results
for the scaling behavior of x4(z) in the vicinity of ¢, using
results from the previous sections. Since we are interested in
the scaling properties of the dynamic susceptibility, we make
two further approximations to obtain an analytical form. We
first use the fact that the time decay of the intermediate scat-
tering function obeys time temperature superposition,
F(q;t)=F(t/7,). Thus we have (with x=T, ¢)

IF(q;1) =_if,(i)<9ln(7a)

= y. (1), 25
pn . e X:(1) (25)

TO{
which is a nonmonotonic function of time with a maximum
for =7, We focus on the height of this maximum, x4
= x4(r=7,), which can then be estimated from the behavior
of the relaxation time alone

T*(d1n7,)\> dln 7, \?
X4=C2|:c_<7> +S(O,T)(P2<7) :|’ (26)
|4

with C=F"(1), so that C=pe~! for a stretched exponential
lineshape, F(x) ~exp(—x”).
To proceed analytically we make use of the scaling form
in Eq. (14) for the relaxation time. We get
S _\2
X4/ C* = LGi()f) + S(O,T)<M) (1-G-(x0)/YP),
4cy |5(P|

(27)

where G..(x) =xf% (x)/f+(x).

In Fig. 7 we show the evolution of y,, evaluated from Eq.
(27) across ¢,. It is clear from this figure that y, has scaling
properties very similar to the ones of the relaxation time
(Fig. 3). Tt increases and saturates to a plateau when T de-
creases for ¢<¢,, obeys a power-law behavior at ¢, and
diverges algebraically at T.(¢) above ¢,.

In particular, we find that the term proportional to c;l and
stemming from the temperature derivative in Eq. (24) is al-
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FIG. 7. Evolution of the peak of the dynamic susceptibility x4
estimated from Eq. (27) for the same volume fractions of in Fig. 3,
including data below (full lines), at (dotted line), and above (dashed
lines) ¢.. The behavior is clearly reminiscent of the one of 7,(¢,T)
in Fig. 3.

ways safely negligible to the volume fraction derivative term
in the dynamic range shown in Fig. 7. In fact, this figure
would be almost unchanged if we had shown only the second
term in Eq. (24). Physically this implies, not too surprisingly,
that dynamic heterogeneity in the scaling regime of the har-
monic sphere system is mainly controlled by density fluctua-
tions, just as for hard spheres [2], while energy fluctuations
play little role. We note that the opposite is true in super-
cooled liquids, where density fluctuations seem to be generi-
cally dominated by energy fluctuations [37,39].

A second interesting consequence is that the scaling be-
havior of x, near ¢. can then be obtained analytically

|5¢|
Xa= X4HS(<P)X+<_,~ , (28)
\NT
where
xi (@) ~ (. — @), (29)

is the hard-sphere result [39], and X (x)=(1-G~(x)/ %)%
The scaling behavior in Eq. (28) is similar to the one of
7,(@,T) found in Eq. (14). In fact the similarity is even
quantitative, since combining Egs. (14), (20), and (28), we
can explicitly show that the relationship between the four-
point susceptibility and the averaged relaxation time is iden-
tical for soft and hard spheres in the scaling regime near ¢,,
up to subleading contributions. This suggests that plotting
xa(o,T) vs 7,(¢,T) would collapse all data for harmonic
spheres onto the hard-sphere data.

For completeness we also show the “thermal” contribu-
tion to x4(f) in Eq. (24) in Fig. 8, because this term is too
small to have observable effects in Fig. 7. Although its shape
seems similar to the one of x4, it is not quite the same: it
vanishes as T— 0 for ¢ < ¢,, because 7, does not depend on
T in this limit. It follows a power-law behavior for ¢=¢,, but
this divergence is in fact entirely due to the 1/cy prefactor,
since the specific heat behaves as c(T) ~\T from Eq. (9).
Finally, for ¢ > ¢_. both terms contributing to x, diverge in
the same power-law manner, as [T—T,.(¢)]2, but the respec-
tive amplitude of the two terms is set by (¢/8¢)* and 1/cy.
This implies that as long as ¢ is close to ¢, the density
derivative term dominates over the temperature derivative
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FIG. 8. Evolution of the contribution of the term containing the
temperature in Eq. (24) for the same parameters and using the same
representation as in Fig. 7. Note that the vertical scale in both fig-
ures is different, and that the thermal contribution to y, is always
much smaller than the density contribution.

term. It is only when ¢ is much larger than ¢, that the tem-
perature contribution might become dominant, but y, is not
described by Eq. (27) anymore and a direct evaluation of all
contributions would be required to investigate this crossover
at large volume fractions. We have not pursued these inves-
tigations.

Dynamic heterogeneity has not been discussed numeri-
cally in harmonic spheres and we cannot compare the present
results with numerical results. However, for hard spheres, it
has been established that the power law scaling in Eq. (29) is
barely visible on actual data [2], and dynamic correlations
seem to increase much more slowly with increasing the den-
sity than predicted by MCT, as is found also for supercooled
liquids [37].

We note again, however, the close similarity between the
present MCT results for dynamic correlations and the scaling
properties found in driven athermal simulations of harmonic
spheres where algebraic divergences of spatial correlations
of particle dynamics and scaling properties very similar to
Fig. 7 were reported [18,19,40].

VI. DISCUSSION

In this paper, we have investigated theoretically the be-
havior of dense assemblies of harmonic spheres at low tem-
peratures in a broad range of volume fractions, encompass-
ing the glass transition of hard spheres at ¢.. We have
combined hypernetted chain closure for the structure with
mode-coupling theory for the dynamics. We find that for fi-
nite temperatures near ¢, harmonic spheres behave effec-
tively as hard spheres with a renormalized volume fraction.
This directly implies a scaling form for the relaxation time in
the part of the volume fraction—temperature phase diagram
in the vicinity of the hard-sphere transition, which applies
also to the amplitude of dynamic heterogeneity. At larger
volume fraction, deviations from hard-sphere behavior arise,
and dynamic scaling breaks down.

When compared to numerical simulations of the dynamics
of harmonic spheres at thermal equilibrium, the known short-
comings of mode-coupling predictions clearly show up:
MCT predicts algebraic singularities that are not observed in
simulations and fails to predict the “activated” scaling be-
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havior observed in simulations of both hard and soft par-
ticles. In particular, using a mode-coupling approach we can-
not discuss the large change of glass fragility with volume
fraction discussed in Refs. [11,12], as these come from subtle
deviations from an Arrhenius behavior which is not predicted
with MCT. Another feature which is not well captured by the
present calculations is the volume fraction dependence of the
MCT critical exponent which increases with ¢ in the simu-
lations, but decreases in our calculations. It is not clear, how-
ever, whether this last failure originates from the approxima-
tion used for the structure factor or from the mode-coupling
theory itself.

Although MCT is qualitatively unable to describe the na-
ture of the glass transition in harmonic spheres, there seems
to exist a time window of approximately three decades where
its predictions can be applied. In experiments with hard-
sphere colloids, it is in fact only very recently that deviations
from MCT behavior were unambiguously observed in ex-
periments covering a very broad range of relaxation times
[2]. This means in turn that for “standard” experiments the
behavior predicted in the present article might still be of
some value and our theoretical approach could certainly be
extended to a broader family of soft pair potentials beyond
harmonic interactions. Thus, we hope that the present results
will motivate further analysis of the dynamics of soft col-
loids in simulations and experiments.

Although we mentioned in the introduction that soft col-
loids are currently studied by several groups, the glass tran-
sition of soft colloids has only very recently been studied in
a system made of microgel particles [7]. In this paper, three
types of particles with increasing softness were studied. The
most striking result of this study is a change in the volume
fraction dependence of the relaxation time with softness,
from 7-a~(<pc—cp)‘7ﬁS for hard particles, to log(7,) < ¢ for
very soft particles. Since the interparticle interaction in this
system is not known, one could imagine using a potential
such as in Eq. (1), with increasing temperature playing the
role of increasing particle softness. Our results in fact predict
that the volume fraction dependence of the relaxation time
does not vary from the hard-sphere behavior for a very broad
range of temperatures of at least six decades, see Fig. 3.
Since the qualitative behavior found in this work should be
independent of the details of the pair potential, this suggests
that the change of particle softness in Ref. [7] also corre-
sponds to a change of the form of the interaction between
particles and is thus difficult to explain theoretically on the
basis of the present work. Although, we consider this the
most likely explanation of the qualitative difference between
results of Ref. [7] and our own, we cannot exclude a possi-
bility that for softer particles some additional, stronger de-
viations from MCT may appear. However, numerical simu-
lations [12] do not seem to indicate that harmonic spheres
behave as the soft microgel particles in Ref. [7], making this
explanation less likely.

Does the scaling behavior found for harmonic spheres
teach some lessons for understanding the glass transition of
molecular glass formers? A major conclusion drawn from the
present theoretical results is that the physics of harmonic
spheres is simply the one of hard spheres: they undergo a
glass transition both upon compression or upon cooling with
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a relaxation time which diverges when the effective volume
fraction ¢.(¢,T) of the harmonic spheres system becomes
equal to ¢, the hard-sphere critical packing fraction. More-
over, the physics for @.(¢@,T) < ¢, is the same for both soft
and hard particles, as seen for instance from the behavior of
the dynamic susceptibilities discussed in Sec. V.

For this physical behavior to be useful to understand as-
pects of the glass transition, one should invoke the possibil-
ity that real liquids can be effectively described as hard
spheres, an assumption which has a long history in the field
of liquid state theory [20]. It was revisited very recently in
the present context in Refs. [41,42] which established that
the dynamics of real liquids, and in particular the interplay
between density and temperature, is qualitatively different
from the one of soft particles with a finite interaction range
such as harmonic spheres. For instance the large change of
glass fragility observed for harmonic spheres is not observed
in molecular liquids, which obey much simpler scaling yield-
ing glass fragilities independent of the density [41]. Here, we
also found that the main contribution to the dynamic suscep-
tibility in Eq. (24) is always given by the density contribu-
tion, while in real liquids the temperature term dominates
[37,39], suggesting that a different physics is at play in both
cases. It could be, for instance, that attractive forces not in-
cluded in potentials such as Eq. (1) provide a non-negligible
contribution to the energy barriers that need to be crossed
during structural relaxation. An obvious additional difference
between harmonic spheres and real liquids is the behavior at
very large densities (not explored in the present work), where
the boundedness of the potential at the origin plays an im-
portant role [43].

Finally, we comment on the intriguing similarity empha-
sized throughout this paper between the present results and
the dynamic scaling behavior discussed in several recent ar-
ticles dealing with the athermal, driven dynamics of har-
monic spheres [18,19,40]. In both cases, algebraic diver-
gences of dynamical quantities are obtained in the hard-
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sphere limit, with a dynamic scaling behavior observed in its
vicinity both at the level of the averaged dynamics and of the
dynamical fluctuations. Note, however, the very different na-
ture of the critical density in both cases [30]: the hard-sphere
glass transition discussed here is defined from the divergence
of an equilibrium quantity, which is thus by definition inde-
pendent of the preparation protocol of the system. Instead the
zero-temperature jamming transition does explicitly depend
on which ensemble of configurations is selected by the stud-
ied dynamics [16,31,44,45]. There is no limit where these
two distinct transitions can merge.

We believe that the deep underlying explanation of this
similarity is the fact that in both cases, the dynamics is con-
trolled by the existence of “soft modes,” meaning that relax-
ation proceeds both within MCT and in athermal dynamics
without spontaneous crossing of energy barriers. In both
cases, thus, nontrivial collective dynamics stems from the
existence of nearly flat directions of the potential energy
landscape [30,40]. This is a clear shortcoming of MCT when
it deals with the glass transition of glass-forming liquids, but
since no such barrier crossing takes place in the 7=0 driven
dynamics relevant for granular systems, we suggest that
mean-field mode-coupling approaches such as the ones de-
veloped here and by others [31] provide good starting points
to describe the dynamics of soft particles near the jamming
transition at zero temperature.
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